Помпу заменили, а ремень и ролики нет. Наглядный результат

Обговорення технічних питань, пов'язаних з двигуном, паливною системою, системою охолодження двигуна
Аватар користувача
Алексей 'Инженер'
Бусовод со стажем
Бусовод со стажем
Повідомлень: 510
З нами з: 30 березня 2007, 08:50
Реальное имя: Алексей
Звідки: Киев (пригород)
Дякував (ла): 2 рази
Подякували: 7 разів

Повідомлення Алексей 'Инженер' »

kds писав:Хорошие вопросы подняли и не грех свои знания пополнить от вас.
У меня вопрос -как, кто относится к расточке блока с надетой толстой
плитой имтирующей головку блока. Дествительно ли так обеспечивается более точная центровка при расточке?
Я не видел этого ни разу ни у кого.

Такое слышу впервые (всего знать нельзя), а наилучший вариант (иногда единственно правильный, как в случае с Таврийскими блоками) это базирование блока по постелям коленвала, а не по привалочной плоскости поддона. С уваженьем!
УАЗ-469Б,
ЗАЗ-968АЭ (дизель VW),
VW Transporter, 2002, 2.5TDI, 65kW (уже нету :( )
Аватар користувача
kds
VW знаток
VW знаток
Повідомлень: 2191
З нами з: 25 листопада 2007, 14:01
Модель авто, тип двигателя, пробег: Т-4 2,4 ААВ.300тыщ
Звідки: Украина

Повідомлення kds »

Вот,что я накопал,но это еще не все,но статья заслуживает внимания
и профессионалам ,а они есть на этом форуме. Они не только с Киева,но и с Кривого рога тоже есть.
-------------------------------------------------------------------------------------
Опыт зарубежных мотористов
Larry Carley
Мало кто сегодня оспаривает тот факт, что плосковершинная финишная обработка цилиндра дает наилучшее качество поверхности для нового комплекта поршневых колец. Плосковершинная обработка позволяет получить относительно гладкую поверхность, у которой большая опорная поверхность для поддержки колец, а также достаточная глубина штриховки для сохранения масла и обеспечения хорошего смазывания колец.

Плосковершинная обработанная поверхность по существу дублирует приработанный цилиндр. Раньше цилиндры хонинговались до нужного размера, а затем с помощью колец производилось окончательное финиширование стенок цилиндра. Но при этом требуется много времени для приработки, а долговечность колец сокращается. Сегодня, когда используются тонкие блоки, поршневые кольца низкого трения, кольца специального профиля и со специальными покрытиями, цилиндры должны быть приведены в состояние, близкое к приработанному, еще перед первым запуском двигателя. Иначе двигатель начнет расходовать масло и уже никогда правильно не уплотнится.



Какой же лучший способ достичь плосковершинного финиширования? Мы опросили много людей, работающих в промышленности, и получили разнообразные ответы на этот вопрос. Вывод: нет однозначного способа, но есть разные процессы, которые должны быть использованы в зависимости от потребностей двигателя и типа хонинговального оборудования.

Скотт Габрильсон, инженер по кольцам компании Federal-Mogul, рассказывает, что ему очень импонирует плосковершинная обработка, потому что это именно то, что делает кольцо с поверхностью цилиндра при приработке. «Чем более отверстие будет походить на то, каким оно должно быть при приработке с кольцом, тем меньше будет износа кольца при приработке и тем долговечнее оно будет».

Габрильсон говорит, что плосковершинная обработка должна состоять по крайней мере из двух этапов: грубого хонингования и затем тонкого финиширования.

"Скоро мы будет рекомендовать один способ финиширования для всех типов колец. Все наши плазмо-молибденовые и хромовые кольца притираются на заводе, так что сами кольца не требуют приработки для уплотнения. Мы рекомендуем хонингование цилиндров с брусками зернистостью 280, затем с брусками 400 или инструментами с абразивной полиамидной щеткой для создания плосковершинное на поверхности".

А как насчет алмазного хонингования? Габрильсон говорит, что алмазные бруски быстрые и очень долговечные. Но алмаз более «агрессивен», чем карбид кремния, поэтому с ним получается больше задиров и других нежелательных дефектов на поверхности. Из-за этого грубое алмазное хонингование всегда должно сопровождаться дополнительной обработкой. Например, с использованием очень мелкого алмаза или обычных абразивных щеток.

Также важна геометрия отверстия. Габрильсон замечает, что изготовители двигателей должны особенно внимательно следить за маслом на двигателях последних моделей. Он добавляет, что блок всегда должен быть предварительно нагружен, если производитель рекомендует так сделать, чтобы свести к минимуму искажение отверстия, что может привести к неплотности и не дать кольцам правильно уплотниться.


"Отверстия должны быть прямыми и круглыми”, - говорит Габрильсон. – “Убедитесь в том, что вы придерживаетесь технических характеристик Ra при финишной обработке (обычно 10-15 Ra на многих последних моделях двигателей). Также рекомендую использовать высококачественные наборы колец. Не экономьте, приобретая дешевые".

"В стандартный набор колец входят верхнее кольцо в 1,2 мм, второе кольцо в 1,5 мм и масляное кольцо в 3,0 мм. Из-за того, что сейчас юбка короче, а шатуны длиннее, на поршнях остается не так много места для колец. Поэтому при смене поршней старайтесь использовать как можно более широкие кольца, тогда они будут жить дольше. Чем шире кольцо, тем дольше оно изнашивается".

Габрильсон говорит, что кольца, которыми вы заменяете старые кольца, должны быть из того же материала, что и предыдущие, или даже из лучшего материала. Производители двигателей до сих пор используют чугунные кольца при создании «экономичных» вариантов для блоков более старых образцов, но в новых двигателях используются кольца из ковкого чугуна или стали, потому что они подвергаются более высоким температурам и нагрузкам. А в отношении финишной обработки поверхности стальные кольца дают мало разницы по сравнению с чугунными. Оба типа живут дольше при плосковершинном финишировании.

Джон Скотт из компании Perfect Circle/Dana Corp. говорит, что все хотят простой легкой инструкции, которая уместилась бы на одной странице, объясняющей, как добиться идеальной поверхности отверстия цилиндра, – но такой быть не может, потому что каждый двигатель работает по-разному. Требования двигателей легковых автомобилей отличаются от требований грузовиков или пикапов.

"Наиболее важна геометрия отверстия”, - говорит Скотт. – “Если у вас проблемы с искажением формы отверстия, то при использовании маслосъемных колец низкого трения может возникнуть множество проблем".

Скотт говорит, что числа Ra для финиширования уже не настолько важны, как раньше, потому что у большинства производителей двигателей нет хорошего оборудования для измерения шероховатости поверхности. "Мы любим видеть уменьшение Ra приблизительно до 10 или меньше, но мы также хотим видеть определенную глубину впадин и значения площади опорной поверхности, которые отображают хорошую поверхность для колец. Для этого нужно оборудование, которое могло бы измерить все параметры поверхностного финиширования".

Чем более гладкая поверхность, тем лучше?

"Я всегда был сторонником самого гладкого поверхностного финиширования”, - признается Лайл Хейли из Peterson Machine Tool. – “Когда мы начинали работать с хонинговальными щетками, мы много экспериментировали, чтобы посмотреть, как их использование влияет на состояние поверхности. Мы быстро поняли, что такой прием дает реальные преимущества, потому что щетка удаляет оставшиеся частицы и задиры, которые остаются на поверхности после хонингования. Независимо от того, какой хонинговальный брусок использовать, все равно остаются «осадки»".

"Отсюда следует вывод, что если эти осадки не убрать, то долговечность колец уменьшится. Сегодняшние кольца – это своего рода новые MLS прокладки головки цилиндра. Они требуют поверхности такой же гладкой, как моя макушка. Можно сколько угодно делать самое лучшее хонингование в мире, но если не дополнять его хорошим поверхностным финишированием, кольца никогда не будут служить так долго, как этого хотелось бы".

Хейли говорит, что нет оправдания для изготовленных двигателей, которые сжигают масло или у которых отсутствует хорошая компрессия. Для получения хорошей обработки цилиндров нужно рассуждать здраво и делать следующее:


• Использовать хороший нутромер.
• Быть осторожным с прямым хонингованием.
• Добиваться геометрии отверстия в пределах 0,01 мм или меньше для отклонений от прямолинейности и круглости, лучше всего в пределах 0,005 мм.
• После хонингования почистить цилиндры хорошей мягкой щеткой, чтобы удалить остатки.

Тип хонинговальных брусков и процедуры финишной обработки зависит от конкретной задачи. Хейли говорит, что для большинства задач подходят бруски 280, но они грубоватые, поэтому вы не сможете добиться плосковершинной обработки. “Лично я использовал хотя бы 400-е бруски для удаления слоя 0,01 мм – но не намного больше этого, иначе базовый материал израсходуется. Затем я бы создал плосковершинную структуру на поверхности мягкой щеткой”.

Хейли считает, что чистка блока после хонингования и плосковершинного финиширования не менее важна, чем сам процесс хонингования. Стандартный метод очистки цилиндров горячей мыльной водой все равно оставляет лишние частички материала в углублениях штриховки, которые потом могут попасть на кольца.

После очистки цилиндров воспользуйтесь ATF или каким-либо защитным средством и протрите цилиндры. Таким образом, вы удалите все ненужные остатки с поверхности.

У некоторых двигателей последних моделей с поршнями, покрытыми молибденом, почти нет зазора в цилиндре. Покрытие защищает поршни от истирания и снижает шум, который издает поршень при холодном двигателе. Поршни с покрытием не требуют обильного смазывания, но им нужна гладкая поверхность цилиндра, хорошая геометрия и чистая поверхность отверстия. “При отсутствии всего этого начнутся проблемы”, - заключает Хейли.


Алмазы – это навсегда?

Многие специалисты утверждают, что тип процедуры плосковершинной обработки, который можно рекомендовать клиентам, зависит от задачи и от оборудования, которое они используют. Например, используют ли они хонинговальный станок или хонингуют вручную? Какой Ra им нужен и какой вид финишной обработки они получают перед тем, как начать процесс создания плосковершинной структуры на поверхности цилиндров?

Чтобы создавать плосковершинную поверхность после хонингования, некоторые рекомендуют использовать щетку, например, жесткую, которая насаживается на держатели хонинговальной головки или щетку с мягкой щетиной на ручном хоне. Для плосковершинной обработки обычно требуется от 10-15 движений для каждого цилиндра. Это улучшает Ra до 10.

Многие используют алмазные хонинговальные головки, даже гонщики, потому что алмазы обеспечивают лучшую геометрию отверстия. Действительно, не нужно следить за конусной формой, как этого обычно требуют бруски из керамического материала на абразивной связке, которые имеют тенденцию ломаться. Как только алмазы прирабатываются, они прослужат еще долго.

Щетки или бруски?

В последние годы появилось много сторонников плосковершинного хонингования с использованием алмазов. Многие до последнего времени использовали щетки для плосковершинной поверхности, но замечено, что такой способ постепенно начал терять свою популярность. Некоторые начали использовать алмаз с зерном 600 для плосковершинной обработки отверстий. Щетку в таком случае если и используют, то для завершающей чистки, но не для плосковершинной обработки. А есть специалисты, кто используют двухэтапный процесс при помощи алмаза с зерном 280-400, а затем плосковершинное хонингование поверхности 600-ми алмазными брусками. Изначальная шероховатость непосредственно перед окончательным этапом обработки обычно составляет от 25 до 38 Ra. В течение второго этапа поверхностная шероховатость доводится до 16-22 Ra.

Если у вас нет дорогостоящего профилометра для анализа микроструктуры поверхности, используйте грубый хонинговальный брусок, с помощью которого получают обработку в предсказуемых пределах или в пределах, которые можно измерить с помощью недорогого профилометра. Затем нужно плосковершинное хонингование тонким абразивом для достижения нужной шероховатости.

Большинство из тех, кто используют сегодня алмазы для грубого хонингования, также пытаются его использовать и для окончательной обработки отверстий. Самыми последними переключились с абразивных материалов на керамической связке на алмазы создатели спортивных моторов. Но они остались довольны этой переменой.


Замечено, что процедуры с использованием алмаза отличаются друг от друга. Из-за различий в типах связующего, которое используется при изготовлении алмазных брусков, продукты разных производителей ведут себя и режут по-разному. Если использовать очень сильное связующее, оно обеспечивает долговечность алмаза и отличную согласованность режимов для создания плосковершинной поверхности. Но при использовании некоторых брусков алмазы необходимо править после каждых 50 двигателей. Это не очень простая, но необходимая процедура, если вы хотите получать хорошие результаты.

Алмазы сейчас становятся популярны, потому что они дают более точный результат с наименьшими усилиями. Но если вы хотите воспользоваться всеми их преимуществами, вам понадобится мощный станок, разработанный специально под использование алмазов. Если у вас такого нет, то ничего не получится.

Тип охлаждающей жидкости при хонинговании с алмазом также очень важен. Охлаждающая жидкость снимает проблему перегрева цилиндров при хонинговании, повышает стабильность и улучшает устойчивость к деформации отверстий. Некоторые производители рекомендуют синтетическую охлаждающую жидкость, но замечено, что важно ее разбавлять в некоторых пределах.

Если охлаждающая жидкость слишком густая, то это может засорить станок. А если слишком жидкая, то это приведет к ржавчине, а не к смазыванию брусков должным образом. Проблем с охлаждающей жидкостью можно избежать, если использовать рефрактометр (стоит от 150 до 200 долларов), чтобы следить за концентрацией охлаждающей жидкости.

Округлость, прямолинейность и… тепло

Сегодня известно, что для плосковершинной обработки есть множество разных способов. Можно использовать стандартные абразивы, различные связующие, хонинговальный инструмент для плосковершинного или двухэтапного алмазного хонингования. Иногда время диктует, какой тип хонингования и брусок выбрать. Если производителю двигателя нужен быстрый цикл, то он может использовать более грубый брусок для грубой обработки, а затем брусок более острый при плосковершинной обработке отверстия. Обычно в производственных компаниях применяют 320-е или 400-е алмазные бруски, а затем выполняют чистку при помощи абразивных брусков с зерном 180.


Недавно появились новые хонинговальные головки, которые поддерживают в одном узле и алмазные бруски, и щетки. Таким образом, появляется возможность хонинговать только алмазом. Алмазные бруски затем убираются, и вынимаются щетки для финишной обработки цилиндра. Снимать или менять местами инструменты при этом не требуется.

Замечено изменение и в среде производства гоночных автомобилей, которое состоит в появлении желания конструкторов увеличить значения "RVK" (глубины впадин) в штриховке, чтобы улучшить маслоудержание. Другим вопросом является то, как минимизировать деформацию отверстия цилиндра во время работы двигателя.

Для моделирования деформации отверстия, которая возникает, когда головки цилиндров установлены на блок, уже давно использовались так называемые «ложные головки», представляющие собой плоские толстые пластины, притягиваемые к блоку перед хонингованием. Хонингование блоков с установленными пластинами обеспечивает более круглые отверстия и лучшее уплотнение колец. Но смоделировать температуру не так легко. (Вот это я и имел в виду)

Некоторые производители тестируют сейчас новую технологию, которую они назвали "горячее хонингование". При этом горячая охлаждающая жидкость проходит через блок во время его хонингования. Результаты: еще лучше геометрия отверстия и ниже уровень деформации, чем при использовании стандартных пластин.

Невозможно получить такие же результаты, если просто нагреть блок и отхонинговать его. Обязательно нужно, чтобы охлаждающая жидкость проходила через него и, некоторым образом, воспроизводила деформацию, которая возникает при работающем двигателе. Это подтвердили и динамометрические испытания, которые показали, что горячее хонингование положительно влияет на уплотнение колец и мощность двигателя.
Лазерное структурирование

Последний поворот в области высокоразвитой технологии восстановления поверхности цилиндров – это так называемое лазерное структурирование. Этот процесс был разработан относительно недавно.

Лазерное структурирование использует мощный лазер для того, чтобы прожигать маленькие канавки или углубления на поверхности цилиндров для улучшения маслоудержания. Лазерное структурирование, по отзывам специалистов, улучшает уплотнение колец, снижает потребление масла до 40 процентов, снижает образование частиц до 10 до 30 процентов и гидрокарбонов до 20 процентов, продлевает жизнь колец до 50 процентов по сравнению с традиционным хонингованием и финишной обработкой. Лазер не используется для хонингования цилиндра или изменения геометрии отверстия, но он создает уникальную модель микрокарманов для маслоудержания на стенках цилиндра. Утверждают, что таким образом можно создать абсолютно любые микрорельефы на поверхности отверстия.

Обычно выжигается серия точек и линий глубиной от 25 до 60 микронов и шириной в 40 микронов в верхней трети цилиндра (после того как отверстие наполовину финишировано). Это та область, в которой давление и износ колец наиболее высоки.

Последний этап хонингования производится с использованием пяти брусков, чтобы избавиться от наваривания материала вокруг углублений и затем финишная обработка отверстий. Этап с использование лазера занимает от 9 до 15 секунд на один цилиндр при помощи специального станка, который вращает и опускает вниз луч лазера в тот момент, когда он обрабатывает поверхность цилиндра.

Считается, что лазерное структурирование идеально подходит для твердых блоков или блоков с особым покрытием, из-за чего их трудно подвергать плосковершинной обработке при помощи стандартных технологий хонингования. Это идеальный способ для мощных двигателей, таких как дизельные или авиационные.

Затраты на такой способ обычно равняются 500-750 долларам на один двигатель, включая процедуру хонингования и лазерного структурирования.
Т-4 ААВ.94Г.
Kudrik

Повідомлення Kudrik »

Спасибо. Прочитал. Но эта информация больше для профессионалов-станочников. А в нашем городе последние разработки ещё не применяются. Так ,что особо выбирать не из чего. Мне остаётся проконтролировать размер да тщательно вымыть блок после расточки. Удачи Вам.
Аватар користувача
kds
VW знаток
VW знаток
Повідомлень: 2191
З нами з: 25 листопада 2007, 14:01
Модель авто, тип двигателя, пробег: Т-4 2,4 ААВ.300тыщ
Звідки: Украина

Повідомлення kds »

Меня заинтересовала фраза вот эта и я думаю,что она нам будет полезна.
-----------------------------------------------------------------------------------
После очистки цилиндров воспользуйтесь ATF или каким-либо защитным средством и протрите цилиндры. Таким образом, вы удалите все ненужные остатки с поверхности.
Ведь самое сложное после расточки-убрать всю пыль с гильз.
И вот новый способ,но это еще надо проверить.
Т-4 ААВ.94Г.
Гена

Повідомлення Гена »

kds!!!...
Обычно выжигается серия точек и линий глубиной от 25 до 60 микронов и шириной в 40 микронов в верхней трети цилиндра (после того как отверстие наполовину финишировано). Это та область, в которой давление и износ колец наиболее высоки.

Где ты это надыбал...вспомнил нам читали все это в 1988г. на Владимирском моторном з-де на курсах повышения...там еще пример приводили за какую-то японскую легковушку
которая прошла полмиллиона на минеральном масле и поменяли только маслосъемные кольца. Помню еще что некоторые старые мастера после хоны делали финиш деревянными брусками твердых пород дерева с керосином но не для всех а как бы для своих.Сколько воды утекло с той поры...
С ув.Гена.
Kudrik

Повідомлення Kudrik »

Мою по старой схеме. Сначала авиационным керосином ,потом горячей водой с содой под давлением 5атм. Я же не гоночные двигатели делаю. Думаю этого достаточно. Удачи Вам.
Аватар користувача
kds
VW знаток
VW знаток
Повідомлень: 2191
З нами з: 25 листопада 2007, 14:01
Модель авто, тип двигателя, пробег: Т-4 2,4 ААВ.300тыщ
Звідки: Украина

Повідомлення kds »

Вот и спец своим опытом поделился,тоже примем себе на заметку!
Спасибо.
Если интересно то могу продолжить выкладывать избранные мной статьи про лучшие методы специалистов о моторном ремонте.
Т-4 ААВ.94Г.
Гена

Повідомлення Гена »

Нету на наших бюджетных машинках...движках лазерной сетки на стенках цилинров...так что обойдемся тем что есть...Kudrik тебе УСП не нужно ? Даром!!!
С ув.Гена.
Kudrik

Повідомлення Kudrik »

kds писав:Вот и спец своим опытом поделился,тоже примем себе на заметку!
Спасибо.
Если интересно то могу продолжить выкладывать избранные мной статьи про лучшие методы специалистов о моторном ремонте.
Уважаемый . Просьба не называть меня спецом. А то как-то не по себе. :( Я простой- кустарь одиночка :) ( При Сталине была такая категория с дополнением "без мотора" т.е. без средств механизации). Удачи Вам.
Kudrik

Повідомлення Kudrik »

Гена писав:Нету на наших бюджетных машинках...движках лазерной сетки на стенках цилинров...так что обойдемся тем что есть...Kudrik тебе УСП не нужно ? Даром!!!
С ув.Гена.
Извиняюсь. Что такое УСП? С уважением.
Аватар користувача
kds
VW знаток
VW знаток
Повідомлень: 2191
З нами з: 25 листопада 2007, 14:01
Модель авто, тип двигателя, пробег: Т-4 2,4 ААВ.300тыщ
Звідки: Украина

Повідомлення kds »

Ну тогда про лазер забыли,то вернемся к любимой нами на этой неделе теме -головка блока,перегрев и его последствия.

Вот,что пишут спецы.
-----------------------------------------------------------------------------------
Нарушение уплотнения камеры сгорания - тоже довольно распространенная причина перегрева. Продукты сгорания топлива, находясь под большим давлением в цилиндре, через неплотности проникают в рубашку охлаждения и вытесняют от стенок камеры сгорания охлаждающую жидкость. Образуется горячая газовая «подушка», дополнительно нагревающая стенку. Подобная картина возникает из-за прогара прокладки головки, трещин в головке и гильзе цилиндра, деформации привалочной плоскости головки или блока, - чаще всего вследствие предшествовавшего перегрева. Определить, что подобная негерметичность имеет место, можно по запаху выхлопных газов в расширительном бачке, вытеканию антифриза из бачка при работе двигателя, быстрому повышению давления в системе охлаждения сразу после запуска, а также по характерной водомасляной эмульсии в картере. Но установить конкретно, с чем связана негерметичность, удается, как правило, только после частичной разборки двигателя.

Явная негерметичность в системе охлаждения возникает чаще всего из-за трещин в шлангах, ослабления затяжки хомутов, износа уплотнения насоса, неисправности крана отопителя, радиатора и других причин. Отметим, что течь радиатора часто появляется после «разъедания» трубок так называемым «Тосолом» неизвестного происхождения, а течь уплотнения насоса - после длительной эксплуатации на воде. Установить, что охлаждающей жидкости в системе мало, визуально так же просто, как и определить место утечки.

Негерметичность системы охлаждения в ее верхней части, в том числе из-за неисправности клапана пробки радиатора, приводит к падению давления в системе до атмосферного. Как известно, чем меньше давление, - тем ниже температура кипения жидкости. Если рабочая температура в системе близка к 100°С, то жидкость может закипеть. Нередко кипение в негерметичной системе возникает даже не при работе двигателя, а после его выключения. Определить, что система действительно негерметична, можно по отсутствию давления в верхнем шланге радиатора на прогретом двигателе.

Что происходит при перегреве

Как отмечено выше, при перегреве двигателя начинается кипение жидкости в рубашке охлаждения головки блока цилиндров. Образующаяся паровая пробка (или подушка) препятствует непосредственному контакту охлаждающей жидкости с металлическими стенками. Из-за этого эффективность их охлаждения резко уменьшается, а температура значительно возрастает.

Такое явление носит обычно местный характер - вблизи области кипения температура стенки может быть заметно выше, чем на указателе (а все потому, что датчик устанавливается на наружной стенке головки). В результате в головке блока могут появиться дефекты, в первую очередь - трещины. В бензиновых двигателях - обычно между седлами клапанов, а в дизелях - между седлом выпускного клапана и крышкой форкамеры. В чугунных головках иногда встречаются и трещины поперек седла выпускного клапана. Трещины возникают также в рубашке охлаждения, например, по постелям распределительного вала или по отверстиям болтов крепления головки блока. Такие дефекты лучше устранять заменой головки, а не сваркой, которую пока не удается выполнить с высокой надежностью.

При перегреве, даже если трещин не возникло, головка блока часто получает значительные деформации. Так как по краям головка прижата к блоку болтами, а перегревается ее средняя часть, происходит следующее. У большинства современных двигателей головка изготовлена из алюминиевого сплава, который при нагреве расширяется больше, чем сталь крепежных болтов. При сильном нагреве расширение головки приводит к резкому возрастанию усилий сжатия прокладки по краям, где расположены болты, в то время как расширение перегретой средней части головки болтами не сдерживается. Из-за этого происходит, с одной стороны, деформация (провал от плоскости) средней части головки, а с другой - дополнительное обжатие и деформация прокладки усилиями, значительно превышающими эксплуатационные.

Очевидно, после охлаждения двигателя в отдельных местах, особенно у краев цилиндров, прокладка уже не будет зажата должным образом, что может вызвать течь. При дальнейшей эксплуатации такого двигателя металлическая окантовка прокладки, потеряв тепловой контакт с плоскостями головки и блока, перегревается, а затем прогорает. Особенно это характерно для двигателей со вставными «мокрыми» гильзами или если между цилиндрами слишком узкие перемычки.

В довершение всего деформация головки приводит, как правило, к искривлению оси постелей распределительного вала, расположенных в ее верхней части. И без серьезного ремонта эти последствия перегрева устранить уже не удастся.

Не менее опасен перегрев и для цилиндропоршневой группы. Поскольку кипение охлаждающей жидкости распространяется постепенно от головки на все большую часть рубашки охлаждения, то резко снижается и эффективность охлаждения цилиндров.

А это значит, что ухудшается отвод тепла от нагреваемого горячими газами поршня (тепло от него отводится в основном через поршневые кольца в стенку цилиндра). Температура поршня растет, одновременно происходит и его тепловое расширение. Поскольку поршень алюминиевый, а цилиндр, как правило, чугунный, то разница в тепловом расширении материалов приводит к уменьшению рабочего зазора в цилиндре.

Конструкция поршня всегда предусматривает компенсацию его теплового расширения соответствующим профилем наружной поверхности (см. «АБС-авто», 1997, №№ 11-12). Например, верхняя часть поршня всегда нагрета больше, поэтому диаметр здесь меньше, поршень получается коническим. С другой стороны, нижняя часть поршня - юбка - при нагреве сильнее расширяется по оси поршневого пальца. Поэтому ее делают в сечении эллипсной с большой осью, перпендикулярной оси пальца. А чтобы сделать зазор в цилиндре совсем малым (до 0,02-0,03 мм), применяют дополнительную компенсацию теплового расширения с помощью стальных пластин, пазов и др.

Но от перегрева и это не спасает. Сильно нагреваясь, поршень расширяется в основном по оси пальца. Давление юбки на стенку цилиндра растет, причем наиболее сильно - вблизи отверстий под палец. Силы трения поршня о стенку увеличиваются, температура юбки - тоже, а масляная пленка из-за разогрева масла и роста давления поршня на стенку утоньшается. В конечном счете это приводит к разрыву пленки, полусухому трению, а затем «схватыванию» алюминия с чугуном, т.е. к задиру, а иногда - к заклиниванию поршня в цилиндре.

Задир характеризуется взаимным переносом материалов, т.е. чугуна на поверхность поршня, а алюминиевого сплава - на цилиндр с образованием глубоких рисок и борозд. Естественно, такие повреждения цилиндра приводят в дальнейшем к уменьшению компрессии и повышенному расходу масла.

Но и это не все. После охлаждения перегретый поршень, оказывается, может сохранить большую остаточную деформацию, а его размер по юбке способен уменьшиться на 0,2-0,4 мм.

Это значит, что поршень застучит, особенно после запуска холодного двигателя.

Действие перегрева на поршень этим не ограничивается. Ведь наиболее нагретая его часть - верхняя, и ее тоже может заклинивать при чрезмерном расширении. Последствия будут еще хуже - задиры в верхней части поршня распространяются и на поршневые кольца, нередко их буквально завальцевывает в канавках. Как результат - кольца полностью теряют подвижность. Такой цилиндр способен выключиться, т.к. компрессия в нем упадет практически до нуля.

Иногда от перегрева поршневые кольца теряют упругость. Но это - редкое явление. Практика показывает, что раньше наступает задир и заклинивание, поэтому кольца чаще теряют подвижность в канавках, чем упругость.

Дальнейшая судьба такого двигателя известна - капитальный ремонт с расточкой блока и заменой поршней и колец на ремонтные. Перечень работ по головке блока вообще получается непредсказуемым. Лучше все-таки мотор до этого не доводить. Открывая периодически капот и проверяя уровень жидкости, можно в какой-то степени себя обезопасить. Можно. Но не на все 100 процентов.


--------------------------------------------------------------------------------------
Т-4 ААВ.94Г.
Гена

Повідомлення Гена »

Универсальное слесарное приспособление!!! Применялось для крепежа разных нестандартных деталей в инструментальном производстве...состоит из плит шлифованных разного размера имеет продольные и поперечные пазы для крепежных болтов...
С ув.Гена.
Kudrik

Повідомлення Kudrik »

Гена писав:Универсальное слесарное приспособление!!! Применялось для крепежа разных нестандартных деталей в инструментальном производстве...
С ув.Гена.
Геннадий спасибо ,понял. Пока не надо. Мне в моей работе необходимы специальные профессиональные инструменты для ремонта головок. Часть из них у меня есть . Удачи Вам. P.S. Пишу пока медленно--руки больше заточены под инструмент. :) Поэтому отвечаю не сразу.
Аватар користувача
kds
VW знаток
VW знаток
Повідомлень: 2191
З нами з: 25 листопада 2007, 14:01
Модель авто, тип двигателя, пробег: Т-4 2,4 ААВ.300тыщ
Звідки: Украина

Повідомлення kds »

Вот главная моя с запасников статья про дизеля и их проблемы,читаешь и радуешься за умных людей,которые нам знания в мозги вкладуют.

-------------------------------------------------------------------------------------
Практика показывает, что не только механик, но и сам владелец дизельного автомобиля должен хорошо представлять себе особенности его эксплуатации и ремонта, чтобы избежать траты времени, нервов и, главное, немалых денег. Попробуем разобраться, какие бывают неисправности у дизелей, от чего они возникают и как с ними бороться.

Приобретая дизельный автомобиль, многие обращают внимание только на низкий расход недорогого топлива, забывая об объективно больших затратах на эксплуатацию и ремонт, хотя к этому надо быть готовым.

Возможные неисправности двигателей можно разбить на следующие группы по причинам возникновения: конструктивно-производственные недостатки или особенности двигателя; неквалифицированное обслуживание и неграмотная эксплуатация; низкое качество дизельного топлива; «естественный» износ двигателя и топливоподающей аппаратуры; низкое качество ремонта и запасных частей.

Рассмотрим наиболее распространенные модели дизельных двигателей именно с точки зрения перечисленных проблем.

Конструктивно-производственные факторы

Сразу оговоримся, что все дизельные двигатели достаточно надежны, а недостатки, связанные с их конструкцией или технологией производства, проявляются, как правило, в тяжелых условиях эксплуатации и при пробегах, превышающих назначенный заводом ресурс или близких к нему. И никак иначе, в противном случае избалованные хорошей техникой и сервисом зарубежные потребители разорили бы заводы-изготовители судебными исками. А вот попадая в Россию, дизельные иномарки как раз и сталкиваются с тяжелыми условиями эксплуатации и, имея, как правило, очень приличный пробег, охотно проявляют все конструктивные недоработки.

Двигатели фирмы VW, к примеру, имеют головку блока цилиндров, в которой часто обнаруживается целый ряд дефектов. Так, в ней нередко образуются трещины. Завод-изготовитель даже допускает эксплуатацию с межседельными трещинами шириной до 0,5 мм.Помимо этого, нередки случаи выпадения форкамер, приводящие к повреждениям двигателя. А это уже требует серьезного ремонта. Ко всему прочему, приливы под крепление форкамер откровенно слабые, и при неаккуратном снятии или установке форсунок сразу ломаются.

Конструктивное исполнение редукционного клапана маслонасоса двигателей VW неудачно, и нередки случаи его заклинивания с последующим «раздуванием» и разрушением масляного фильтра и полной потерей смазки при холодном пуске, особенно в условиях низких температур. Сказанное, правда, не относится к насосам шестицилиндровых двигателей D24, у которых применяются шестерни с внутренним зацеплением, и другая конструкция редукционного клапана.

На двигателях объемом 1,6 и 1,9 л неудачно выполнена посадка шкива зубчатого ремня на переднем носке коленвала. При малейшем нарушении посадочной плоскости торца шкива начинается его биение, а к нему еще крепятся довольно тяжелые шкивы навесных агрегатов. Это всегда оканчивается ослаблением посадки и обрывом ремня.

Справедливости ради следует заметить, что повреждение торца возникает при неаккуратном проведении ремонтных работ или нарушении требований по затяжке центрального болта, ставить который необходимо на клей-герметик Loctite.

Двигатели Mercedes подобных конструктивных недостатков не имеют, подтверждая своей надежностью и ресурсом высокую репутацию фирмы. Однако можно считать явно неудачным решением использование роторно-распределительных насосов Lucas на двигателях объемом 2,2 и 2,9 л (модели ОМ 604, ОМ 602.982) на автомобилях C и E классов. Отказы этих насосов нередки, но не столь критичны, и, как правило, даже позволяют доехать до сервисной службы. Рядные насосы Bosch при износе плунжерных пар и кулачкового вала дают увеличение неравномерности подачи и характерный «тракторный» звук на холостых оборотах.

Двигатели автомобилей Opel откровенно слабых мест не имеют, однако модели объемом 1,6 и 1,7 л очень чувствительны к снижению давления масла и уменьшению его подачи к подшипникам распредвала и рокерам. Именно поэтому при больших пробегах для двигателей Opel характерны износы кулачков распредвала и рокеров. Ломающиеся рокеры этих двигателей практически никогда не защищают от повреждений клапаны и направляющие втулки, и в случае обрыва ремня всегда приходится менять 2-3 клапана и столько же направляющих.

В двигателях объемом 2,3 л не очень надежен цепной привод механизма газораспределения, а вертикально расположенный ТНВД чувствителен к негерметичности топливопроводов.

Слабым местом двигателей BMW (2,4 и 2,5 л) является топливный насос высокого давления с электронным управлением и электрооборудование системы управления двигателем. Самый распространенный дефект этих ТНВД — быстрый износ плунжерной пары, проявляющийся в затрудненном горячем запуске, хотя это, видимо, чисто российская проблема, связанная с низким качеством дизтоплива. Очень часто встречаются обрывы электропроводки и нарушение контактов. А износ токосъемных дорожек управляющего электромеханизма ТНВД приводит к колебаниям оборотов холостого хода.

В то же время сам силовой агрегат надежен, обладает хорошей ремонтопригодностью, но предъявляет высокие требования к качеству моторного масла.

Дизели Ford объемом 2,5 л, устанавливаемые на микроавтобусы, зарекомендовали себя как надежные и экономичные силовые агрегаты. Однако система их предпускового подогрева с помощью электрофакельного устройства очень капризна и ненадежна. То же самое относится и к системе рециркуляции отработавших газов.

Двигатели Ford объемом 1,8 л тоже в целом очень неплохи, но главным их недостатком является практически неизбежное разрушение одной или нескольких крышек распредвалов при обрыве ремня ГРМ, после чего требуется замена головки блока.

Современные дизели французского производства требуют очень квалифицированного обслуживания и ремонта. Главный их недостаток трудно отнести к конструктивным — это высокая цена запасных частей, особенно для дизелей Renault.

Итальянские дизели Fiat просты по конструкции, имеют неплохой ресурс, но чувствительны к регулировкам топливной аппаратуры, практически всегда отвечая на их нарушение повышенным износом и вибрацией. То же относятся к дизелям Alfa-Romeo, которые, правда, отличаются более сложной конструкцией. Особенно это характерно для двигателей объемом 2,5 л, имеющих так называемый «туннельный» картер.

У японских дизельных моторов высокий ресурс, они грамотно спроектированы, хотя иногда показывают более низкие запасы прочности кривошипно-шатунного механизма по сравнению с европейцами. Являясь достаточными для обычной эксплуатации, в случае аварийных повреждений их запасы прочности становятся критическими. Например, после разрушения шатунного подшипника валы перед перешлифовкой обязательно должны проверяться на отсутствие трещин, особенно это касается двигателей Isuzu. Другим недостатком, по нашему мнению, являются длинные металлические трубки «обраток», которые, хотя и упрощают конструкцию форсунок, но часто ломаются или заминаются при техническом обслуживании. В последнем варианте резко снижается проходное сечение и возникают проблемы с топливоподачей.

Двигатели Mitsubishi объемом 1,8, 2,3 и 2,5 л имеют балансирные валы, вращающиеся с удвоенной частотой для снижения сил инерции второго порядка. А это требует очень квалифицированного ремонта и серьезного станочного оборудования.

Корейские дизели ведут свое происхождение от японских, поэтому к ним в полной мере относится все вышесказанное.

Американские дизели можно охарактеризовать очень коротко: механика этих восьмицилиндровых монстров надежна, топливная аппаратура, как правило, фирмы Stanadune выполнена на хорошем уровне. Однако на современных двигателях стали устанавливать электронное управление топливоподачей, надежность которого не слишком высока. Резюме таково — если вы решили приобрести американский дизельный джип или мини-вэн — готовьтесь к проблемам с ремонтом, непредвиденным расходам и ожиданию запасных частей.

Неквалифицированное обслуживание и неграмотная эксплуатация

Первая и самая главная причина всех бед — невыполнение регламента эксплуатации. Масло рекомендуется менять через 7500 км вне зависимости от того, какая периодичность указана в инструкции. Это обусловлено повышенным содержанием серы в российском дизтопливе, что приводит к быстрому окислению масла. Качество применяемых масел должно соответствовать требованиям инструкции. Никаких промывок системы смазки при выполнении этих условий не требуется.

Зубчатый ремень привода ГРМ и ТНВД надо менять не реже, чем через 60 тыс. км при условии отсутствия на нем масла. Если масло все же попало на ремень, течь надо немедленно устранить. Необходимо также внимательно следить за топливной системой, например, периодически сливать отстой из топливного фильтра, отворачивая сливную гайку. Топливный бак рекомендуется промывать два раза в год, весной и осенью, полностью его снимая. В актуальности такой процедуры каждый может убедиться самостоятельно, увидев, сколько грязи выльется из бака.

Другая причина, приводящая к повреждениям дизеля, — это попытка запустить его во что бы то ни стало в случаях, когда он запуститься не может. Так, если в баке летняя солярка, а на улице -10°С , попытка пуска бессмысленна: при -5°С уже выпадают парафины и топливо теряет текучесть. Детали топливной аппаратуры, как известно, смазываются топливом, и его отсутствие приводит к сухому трению и их повреждению.

Так что единственный путь в этом случае — искать теплый гараж и отогревать топливную систему. А пускать дизель с буксира вообще не рекомендуется, особенно если ГРМ приводится ремнем. Исправный дизель заводится без дополнительных средств подогрева до -20°С. Если этого не происходит, проще найти и устранить неисправность, чем доводить мотор до капитального ремонта.

Не стоит также разбавлять солярку бензином без крайней на то необходимости — износы топливной аппаратуры из-за ухудшения смазки и самого двигателя из-за нарушения процесса сгорания резко возрастают.

Эксплуатируя дизельный автомобиль, важно помнить, что его двигатель не любит высоких оборотов. Длительные поездки на максимальной скорости — еще один способ приблизить капремонт. И в заключение стоит сказать о том, что прогревать дизельный двигатель крайне необходимо. Конечно, не до рабочей температуры, но хотя бы 3-5 минут.

Качество дизельного топлива

По статистике примерно 50% неисправностей и поломок топливной аппаратуры вызываются качеством топлива. Причем не высоким содержанием серы и отклонением по цетановому числу. Это еще можно было бы пережить, так как негативные последствия растянуты во времени. А вот элементарное наличие воды и механических примесей в топливе губительны. Причем заправка импортным топливом, которое в 3 раза дороже, не спасает, но зато сведет на нет все экономические преимущества дизеля. Солярка там может быть и финская, но емкости для нее все равно не моются. И эффективного спасения от этой чисто российской беды пока не найдено.

Некоторые, правда, советуют отстаивать солярку в бочке. Это, конечно, довольно эффективно, но у многих ли есть такая возможность? Хочется отметить, что только рядные насосы двигателей Mercedes в состоянии без видимых последствий переваривать ту дрянь, которой нас заправляют.

«Естественный» износ

Износ двигателя и деталей топливной аппаратуры после большого пробега в ряду неисправностей занимает далеко не последнее место. Основная проблема связана обычно со снижением компрессии из-за износа поршневой группы. В этом случае двигатель плохо запускается в холодную погоду даже при полностью исправных свечах накаливания и зимнем топливе. При этом он легко заводится с буксира и, будучи прогретым, не доставляет проблем с запуском. Для справки отметим, что нижняя граница компрессии у большинства двигателей составляет 20-26 бар.

Другими важными признаками износа двигателя являются повышенные расход масла и давление картерных газов (более 10 мм вод. ст). Регулировками тут уже не помочь и альтернативы капремонту в этом случае нет.

Износ распылителей форсунок приводит к появлению черного дыма на выхлопе и увеличению расхода топлива. Иногда распылитель «закусывает» и издает характерный стук, сопровождающийся появлением едкого белого дыма. При нормальной эксплуатации ресурс распылителей обычно составляет 60-80 тыс. км.Длительная эксплуатация двигателя с неисправными распылителями форсунок обычно приводит к прогару форкамер и далее поршней. Часто встречаются и износы плунжерных пар ТНВД, обычно сопровождающиеся затруднением запуска горячего двигателя.

Последствия некачественного ремонта

Ремонт дизеля требует хорошего знания особенностей конструкции ремонтируемого мотора и добросовестного выполнения инструкции по ремонту, а также качественных запчастей. Попытки отремонтировать подешевле у «гаражных» мастеров с использованием запасных частей неизвестного происхождения чаще всего приводят к потерянным деньгам, а то и к загубленному двигателю.

Рассмотрим некоторые типовые ошибки при ремонте дизелей.

При обрыве ремня ГРМ бессмысленно пытаться установить новый без снятия и ремонта головки блока , т. к. клапаны «встречаются» с поршнями на любом дизеле. При этом хотя бы 2-3 клапана потребуют замены. Исключения немногочисленны: только у двигателей Renault 2,1 и Ford 2,5 л при ударе поршней по клапанам ломающиеся рокеры и деформированные штанги привода клапанов достаточно надежно предохраняют клапаны от повреждений.

В случае ослабления посадки вихревых камер в головках блока двигателей VW, Peugeot, BMW пытаться закернить их бессмысленно — они все равно выпадают. Надо менять головку блока.

Установка головки на блок двигателей VW без центрирующих втулок недопустима — перекос головки с последующим прогаром прокладки почти неизбежен.

Попытка отделаться заменой поршневых колец при износе цилиндров свыше 0,1 мм бессмысленна — новые кольца пройдут не более 10 тыс. км, а обычно еще меньше. Столь же бесполезна установка новых номинальных поршней без расточки блока цилиндров. Единственно верное решение — расточить блок под ремонтный размер. Замена колец обычно требуется только в случае сильного перегрева двигателя и потери ими упругости.

В случае разрушения шатунного вкладыша или его проворачивания (это сопровождается перегревом нижней головки шатуна) шатун требует обязательного ремонта или замены, иначе двигатель опять «застучит» на первой же тысяче километров.

Ремонт топливной аппаратуры «на коленке» невозможен. Для сколько-нибудь успешного ремонта ТНВД нужны стенды, спецприспособления, технологические карты и механики, знающие особенности ремонта насосов данной модели. При невыполнении этих условий насос будет скорее всего загублен безвозвратно.

Правильно отремонтированный и собранный двигатель заводится без особых проблем стартером. Если мотор не заводится, необходимо искать причину, а не таскать автомобиль на веревке многие километры. Буксир — вернейший способ угробить только что собранный двигатель.

Я тут повыделял все наиболее важные абзацы на свое усмотрение,но думаю,что поступил правильно.
Т-4 ААВ.94Г.
Аватар користувача
kds
VW знаток
VW знаток
Повідомлень: 2191
З нами з: 25 листопада 2007, 14:01
Модель авто, тип двигателя, пробег: Т-4 2,4 ААВ.300тыщ
Звідки: Украина

Повідомлення kds »

И еще последняя важная статья на сегодня.
Если меня не осудят за мою инфу,то я могу еще со всеми поделится накопленными мной темами по ремонту..или это надо перенести в новую тему подскажите?
-------------------------------------------------------------------------------------


й. Безусловным лидером в популярности являются сейчас автомобили VW (Фольксваген), с их двигателей мы и решили начать более конкретное знакомство.

Концерн стал устанавливать дизельные двигатели на легковые автомобили сравнительно давно — со второй половины 70-х годов. С 79-го года дизели VW стала устанавливать на свои автомобили 2,7,8,9-й серий шведская фирма Volvo. Все дизели выпуска до начала 90-х годов отличают широкая унификация, простота конструкции и эксплуатации, что позволяет осуществлять большой спектр ремонтных работ в неспециализированных мастерских.

Условно моторы VW можно разделить на четыре основные группы: четырехцилиндровые вихрекамерные объемом 1.5, 1.6, 1.7, 1.9 л, атмосферные и с турбонаддувом; пятицилиндровые вихрекамерные объемом 2.0, 2.4 л в основном атмосферные (только один из них с турбонаддувом); шестицилиндровые вихрекамерные объемом 2.4 л атмосферные и с турбонаддувом; пятицилиндровые последнего поколения с непосредственным впрыском, турбонаддувом, окислительным нейтрализатором, рециркуляцией ОГ и электронным управлением ТНВД.

Двигатели первой группы являются наиболее распространенными и устанавливаются на автомобили VW Golf, Passat, Audi 80, Seat, Skoda.

После пробега 150-200 тыс. км дизели VW обычно требуют достаточно серьезного ремонта с расточкой блока цилиндров, хотя известны случаи межремонтных пробегов до 400 тыс. км при аккуратной эксплуатации. При меньших пробегах часто встречающейся неисправностью является обрыв зубчатого ремня ГРМ, однозначно приводящий к повреждению клапанов и требующий ремонта головки блока цилиндров. Это происходит, как правило, из-за нарушения сроков замены ремня (60 тыс. км), заклинивания вала ТНВД от попадания воды и грязи в топливо, повреждения или заклинивания ролика натяжителя ремня ГРМ, ослабления посадки зубчатого шкива на коленвалу либо повреждения его шпоночного паза.

Замену ремня ГРМ рекомендуется производить вместе с заменой ролика натяжителя, ресурс которого сопоставим с ресурсом ремня. Следует помнить, что попадание масла на ремень ГРМ резко снижает срок его службы.

При установке нового ремня необходимо знать, что выставить его по меткам на двигателях VW невозможно (!), так как существует только одна метка — ВМТ (ОТ).

Шестерня привода распредвала имеет произвольную бесшпоночную конусную посадку на распредвалу и окончательно затягивается после установки приспособления 2065А в торец распредвала и приспособления 2064 в отверстии шестерни ТНВД при положении первого цилиндра в ВМТ.

Контроль натяжения ремня после установки желательно производить с помощью спецприспособления VW 210.

После установки ремня регулируется угол опережения впрыска с помощью индикатора приспособления 2066(рис. «в»). Нужное значение момента начала подачи устанавливается поворотом ТНВД. Мы понимаем, что перечисление номеров приспособлений звучит не очень красиво, но по-иному тут нельзя. Если не использовать набор этих несложных устройств, то невозможно точно установить момент начала подачи и обеспечить оптимальные тяговые и экономические характеристики автомобиля.

При ремонте головки блока цилиндров после обрыва ремня рекомендуется заменять весь комплект клапанов, так как нередко деформации их стержней после касания поршней остаются вроде бы незначительными, но на высоких оборотах такой клапан «подкусывает» в направляющей втулке и получает удар поршнем уже со всеми вытекающими отсюда последствиями.

Признаками приближающегося капремонта являются затрудненный холодный пуск и возросший расход масла (более 1 л на 1000 км). В этом случае следует замерить компрессию на холодном двигателе, которая должна быть не ниже 25 атм у вихрекамерных дизелей VW и не ниже 19-20 атм у дизелей с непосредственным впрыском (при разбросе не более 5 атм в разных цилиндрах).

Исправный двигатель может плохо заводиться и неустойчиво работать на прогреве из-за неисправностей системы предпускового подогрева. Тогда следует проверить наличие напряжения на свечах, и, если оно есть, отсоединить общую шину, прозвонить тестером каждую свечу по отдельности. Перегоревшие свечи обычно имеют обрыв. Если свеча имеет оплавленный электрод, то причиной этого является неисправная форсунка.

Когда на свечи не подается напряжение, то нужно проверить реле управления свечами и цепи его питания. Часто оказывается перегоревшей плавкая вставка — предохранитель свечей на 50 А.

Топливная аппаратура четырехцилиндровых двигателей достаточно проста в эксплуатации и регулировках, но все же требует для обслуживания специальных приборов и стендов.

При снятии и замене форсунки необходимо каждый раз устанавливать новые теплоизолирующие шайбы между форсунками и головкой цилиндров. Если этого не сделать, то распылитель быстро выйдет из строя от перегрева.

Неисправный распылитель обычно издает характерный стук на работающем моторе, хотя возможны и другие проявления неисправности. Так, в случае естественного износа игл распылителей снижается давление открытия форсунок. Становится нечеткой отсечка при завершении впрыска, что проявляется черным дымом на «прогазовках» и под нагрузкой при одновременном росте расхода топлива. Менять в этом случае рекомендуется весь комплект распылителей, обязательно регулируя на стенде заданное давление открытия.

На двигателях выпуска после 1986 г. выполнен подогрев топливного фильтра с помощью трубопровода «обратки», проходящего через фильтр. Через пластмассовый штуцер крепления этого трубопровода нередко возникает подсос воздуха, сопровождающийся появлением резких стуков и едкого сизого дыма. Обнаружить подсос воздуха поможет прозрачный топливопровод от фильтра к входному штуцеру ТНВД.

Насосы высокого давления на четырехцилиндровых моторах устанавливались типа VE фирмы Bosch и крайне редко CAV Lucas. На ТНВД этого типа часто наблюдается выход из строя насоса низкого давления (подкачивающего). При этом двигатель самопроизвольно глохнет, не развивает полной мощности, обороты плавают. Этот дефект обычно связан с попаданием воды и грязи в топливо, что вызывает износ деталей или их коррозию в случае длительной стоянки автомобиля.

Другая распространенная неисправность — износ кулачковой шайбы и роликов. Признаками этого являются самопроизвольное изменение момента начала подачи топлива и появление мелкой металлической пыли в насосе, — ее хорошо видно, если снять отсечной клапан. Ремонт насоса при этих неисправностях возможен только в условиях специализированной мастерской.

При обычной эксплуатации иногда требуется регулировка оборотов холостого хода и режима увеличения числа оборотов холодного запуска. При отсутствии стенда для проверки ТНВД возможна также грубая регулировка величины подачи с помощью дымомера в режиме измерения пикового значения дымности. В этом случае двигатель регулируется по границе дымности, почти совпадающей на вихрекамерных моторах с их внешней характеристикой (по максимальному крутящему моменту). Кстати, во всех случаях ремонта топливной аппаратуры из-за попадания воды следует сменить топливный фильтр и тщательно промыть бак.Пятицилиндровые вихрекамерные дизели серии CN, DE, NC объемом 2.0 л устанавливались только на автомобили Audi-100 до 1990 г.; двигатели AAS и AAB объемом 2.4 л по конструкции практически идентичны, но первый ставился на Audi-100 91-94 гг., а второй — на VW Т4. Многие детали дизелей 2.0 л унифицированы с деталями дизелей семейства 1.6 л, а дизелей 2.4 л — с деталями моторов 1Х и 1Y объемом 1.9 л.

Для привода ГРМ и ТНВД у рассматриваемых моторов применяются раздельные ремни.

Периодичность замены ремня ГРМ такая же, как у четырехцилиндровых двигателей — 60 тыс. км. При этом следует обращать внимание на состояние подшипников водяного насоса, а при малейшем сомнении водяной насос нужно менять. То же относится и к промежуточному ролику.

Установка ремня производится при снятой шестерне привода ТНВД с помощью приспособления 2065А и затруднений обычно не вызывает. Шестерню привода распредвала, имеющую коническую посадку, следует сперва ослабить, а затем, после установки фаз, зафиксировать в новом положении. Окончательно натяжение ремня следует проверить приспособлением VW210.

При установке ремня ТНВД используется приспособление 2064. Натяжение регулируется перемещением крепежной плиты ТНВД вверх или вниз. После установки ремня производится окончательная регулировка начала подачи с помощью индикаторного приспособления 2066.

Топливная аппаратура пятицилиндровых двигателей производства Bosch не имеет принципиальных отличий от аппаратуры четырехцилиндровых, и ей свойственны те же самые дефекты. Кроме того, нужно отметить, что у насосов двигателей ААВ на Т4 нагружение рычага управления таково, что у него чаще других возникает течь топлива из-под штока рычага вследствие износа резинового уплотнительного кольца и втулки. Как показывает практика, менять только кольцо, не меняя втулки, бесполезно, так как течь возобновится очень быстро. В некоторых случаях приходится менять даже рычаг, имеющий односторонний износ.

Шестицилиндровые двигатели объемом 2.4 л серий D24, DV, DW (атмосферные и с турбонаддувом) применяются на грузовых LT 28, 35 и легковых Volvo. Они идентичны по конструкции, но имеют некоторую разницу, связанную с наличием или отсутствием наддува, компоновочными соображениями и годами выпуска. В то же время некоторые детали, несмотря на внешнее сходство, невзаимозаменяемы, поэтому надо быть внимательным при покупке запчастей, особенно бывших в употреблении.

Привод газораспределительного механизма и ТНВД у двигателей этой серии такой же, как у пятицилиндровых. К срокам замены ремня ГРМ тут надо относиться особенно пунктуально, так как при его обрыве, помимо повреждения клапанов, почти всегда ломается распределительный вал и довольно часто — одна из его крышек крепления, что автоматически влечет за собой сложный ремонт постелей распредвала в головке блока или даже ее . Но в целом шестицилиндровые двигатели VW можно отнести к наиболее надежным и долговечным из дизельных моторов этой фирмы. Их фактический межремонтный ресурс редко бывает меньше 250 тыс. км.

С 1991 года на автомобили Audi-100 стали устанавливать пятицилиндровые турбодизели с непосредственным впрыском топлива АВР и ААТ объемом 2.5 л, а на Audi-80 — четырехцилиндровые 1Z объемом 1.9 л. С 1993 г. двигатель 1Z появился и на автомобилях VW Golf, Vento, Passat. В дальнейшем эти моторы были модифицированы и получили индексы AEL (2.5 л) и AHU (1.9 л). С 1995 г. появилась безнаддувная версия мотора 1.9 л — AEY, а двигатель 2.5 л с индексом D5252T стал с 1996 г. ставиться на Volvo 850 (S70).

Двигатели этой группы являются непревзойденными лидерами в своем классе по топливной экономичности и обладают отменными тяговыми характеристиками. По конструкции силового агрегата они — прямые потомки четырех- и пятицилиндровых вихрекамерных моторов VW с учетом, естественно, серьезных различий в конструкции поршней и головок блоков. Наибольшее отличие у них в системе впрыска и управления двигателем. Эти моторы имеют ТНВД с электронным управлением, то есть полностью отсутствует механическая связь между педалью газа и двигателем. Сигналы, формирующие количество подачи и момент начала впрыска, рассчитываются микропроцессором по сигналам датчиков оборотов, температуры, давления наддува, положения педали газа и других.

Форсунки тоже отличаются по конструкции: на вихрекамерных моторах они со штифтовым распылителем, а на новых двигателях — многоструйные. Распылители этих форсунок не поставляются в запасные части, и в случае неисправности форсунка заменяется целиком. Это дорого, и утешает только то, что менять их приходится гораздо реже, чем на вихрекамерных моторах. Система управления двигателем достаточно надежна, отказы электроники редки и чаще всего связаны с окислением контактов в разъемах. Механическая часть электронного ТНВД страдает по-прежнему от попадания воды и грязи, хотя какие тут могут быть претензии к производителю?

Диагностика двигателя и топливной аппаратуры, в отличие от моторов предыдущего поколения, невозможна в условиях неспециализированной мастерской, не имеющей сканера для считывания кодов неисправностей (VAG1551) и электронной приставки Bosch для регулировки ТНВД на стенде.

Замена ремня ГРМ на этих моторах проводится с той же периодичностью, как и на других моторах VW — через 60 тыс. км. Технология замены аналогична рассмотренной ранее. Единственное отличие в том, что на пятицилиндровых двигателях натяжение ремня осуществляется роликом, а не помпой, что упрощает замену.

И в заключение следует отметить некоторые общие правила, которые необходимо соблюдать при проведении капитального и среднего ремонта двигателей VW:

— прокладки головки блока поставляются в запасные части трех толщин. Толщина прокладки определяется по выступанию поршней в положении ВМТ над плоскостью блока цилиндров. Если нет прокладки нужной толщины, можно смело ставить более толстую. Замена же на более тонкую, чем полагается, недопустима;

— шлифовка или фрезеровка плоскости блока на дизельных двигателях VW не допускается;

у дизелей VW на блоке отсутствуют центрирующие втулки, поэтому для правильной установки прокладки и головки следует пользоваться ложными втулками 3070, иначе неизбежен перекос головки;

— в головке блока цилиндров допускаются трещины между седлами клапанов, но шириной не более 0,5 мм;

— предельно допустимый износ блока цилиндров для всех моторов — 0,10 мм, предельная эллипсность и конусность — 0,05 мм. Если износ превышает указанные значения — расточка блока обязательна;


при проведении капитального ремонта двигателей VW рекомендуется производить замену маслонасоса. Особенно это касается четырехцилиндровых двигателей;— втулки промежуточного вала четырехцилиндровых двигателей требуют обязательного контроля, а при их замене необходимо проверять размеры посадочных мест;

— на четырехцилиндровых моторах нередки случаи сползания ремня ГРМ из-за износа опорных втулок вала ТНВД. Помимо естественного износа это вызывается работой двигателя с перетянутым ремнем.


Вот и все на сегодня!
Т-4 ААВ.94Г.
Аватар користувача
Алексей 'Инженер'
Бусовод со стажем
Бусовод со стажем
Повідомлень: 510
З нами з: 30 березня 2007, 08:50
Реальное имя: Алексей
Звідки: Киев (пригород)
Дякував (ла): 2 рази
Подякували: 7 разів

Повідомлення Алексей 'Инженер' »

Всё не осилил, только частями, но статьи весьма полезные даже для тех, кто это всё уже знает ибо повторенье - мать ученья (с) непомнюкого.
С уваженьем!
УАЗ-469Б,
ЗАЗ-968АЭ (дизель VW),
VW Transporter, 2002, 2.5TDI, 65kW (уже нету :( )
Аватар користувача
кандедат
Дохтер
Повідомлень: 545
З нами з: 23 березня 2008, 21:37
Модель авто, тип двигателя, пробег: VW T-6 мультівен 5.0 турбо
Звідки: c.Нові Петрівці, Київська обл.
Подякували: 7 разів

Re: "Шугалка " для экономных

Повідомлення кандедат »

Темка вийшла нічогенька!
А за той час шо минув Толік уже катається. Залишилось замінити те що знайшли після пуску і все ( датчик температури, корпус термостата, перепускний масляний клапан). А час покаже шо ми наекономили!
Деу Сєкас - тоже ДИРЧИК
066-сім86десять93
067-п"ять829нуль31
Аватар користувача
кандедат
Дохтер
Повідомлень: 545
З нами з: 23 березня 2008, 21:37
Модель авто, тип двигателя, пробег: VW T-6 мультівен 5.0 турбо
Звідки: c.Нові Петрівці, Київська обл.
Подякували: 7 разів

Re: "Шугалка " для экономных

Повідомлення кандедат »

Пора тему обновить!
Розкажу Вам колеги історію про одного мого клієнта. Має він 2.5 АЦВ, машинка гарна, катає людей і по містам і на далекі відстані. Мав проблему з показниками температури у приборній панелі (не працювала стрілка), також час від часу ктпятив машинку бо у районі бачка і сам бачок покрите все "ржавими залишками кіпівшої рідини". На машинку часу не було, сів да гей зі старту наче на Поршику.
От у один прикрасний момент приїздить до мене й каже "почала жерти масло літрами і підтраює. Знімаю пробку заливної горловини, а з відти пух-пух, пойнятно - проблема у поршньоаій групі.
Розбіраємо мотор і бачим:
ЗображенняЗображення
на стінках третього і четвертого циліндрів полоси від прижариних поршнів через усю гільзу ( погана якість фоток, звиняйте). Стінка длоку між стала темносиньо-чорного кольору і у ВМТ 4-того циліндра у пояску де не ходять кільця приплавлений кусок алюмінія з поршня (нельзя було відідрать ножем)
ЗображенняЗображення
а це наші поршня, на другій фоткі поршень який залишив шматак на гільзі. Конєчно же кільщя після таких механічно- теплових вправ заклинило і почався грошовий Апокаліпсис.
:pardon:
Деу Сєкас - тоже ДИРЧИК
066-сім86десять93
067-п"ять829нуль31
Відповісти

Повернутись до “VW T4 -Дизельний двигун, паливна система”